ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
A. Yamawaki, M. Fukumoto, Y. Soga, Y. Ohtsuka, Y. Ueda, K. Ohya
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1038-1042
Divertors and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9048
Articles are hosted by Taylor and Francis Online.
Since carbon deposition layers in tokamak devices will contain significant amount of tritium, it is important to study its formation mechanism. In this study, tungsten and molybdenum samples with a temperature gradient were irradiated by a mixed ion beam to precisely study temperature dependence of the deposition characteristics. For molybdenum, the temperature of the boundary between "deposition" and "nodeposition" is higher than W. This results roughly agree with the results by the material mixing model proposed by Kriegeretal [K. Krieger. J. Roth. J. of Nucl. Mater. 290-293 (2003) 107.]. Erosion yield of C deposition layer in our experimental conditions was almost equal or less than the yield by Rothmodel [J. Roth, C. Garcia-Rosales, Nucl. Fusion 36 (1996) 1647] for graphite.