ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
D. L. Brower, W. X. Ding, V. V. Mirnov, M. A. Van Zeeland, T. N. Carlstrom
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 983-988
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9038
Articles are hosted by Taylor and Francis Online.
For future burning plasma experiments, all diagnostics must be re-evaluated in terms of their measurement capabilities and robustness in the harsh, high-temperature environment. This is certainly true for interferometry measurements where conventional approaches may not be ideal and interpretation may require modification due to high plasma temperatures. Optimizing these systems to provide maximum information is crucial to understanding burning plasma dynamics. This paper explores a variety of phase measurement techniques for the main body and divertor regions that can be utilized on fusion plasma experiments like ITER and beyond.