ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
D. L. Brower, W. X. Ding, V. V. Mirnov, M. A. Van Zeeland, T. N. Carlstrom
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 983-988
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9038
Articles are hosted by Taylor and Francis Online.
For future burning plasma experiments, all diagnostics must be re-evaluated in terms of their measurement capabilities and robustness in the harsh, high-temperature environment. This is certainly true for interferometry measurements where conventional approaches may not be ideal and interpretation may require modification due to high plasma temperatures. Optimizing these systems to provide maximum information is crucial to understanding burning plasma dynamics. This paper explores a variety of phase measurement techniques for the main body and divertor regions that can be utilized on fusion plasma experiments like ITER and beyond.