ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Kunihiko Tomiyasu, Kai Yokoyama, Kunihito Yamauchi, Masato Watanabe, Akitoshi Okino, Eiki Hotta
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 967-971
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9035
Articles are hosted by Taylor and Francis Online.
In order to evaluate the effect of cusp magnetic field in the cylindrical Radially Convergent Beam Fusion (RCBF) device, four kinds of experimental setups were examined. The maximum Neutron Production Rate (NPR) of 7.4 x 109 n/s was obtained at -80 kV and 15 A. As a result of the theoretical evaluation of fusion regimes in the RCBF device, the NPR normalized by the cathode current and the gas pressure was compared between the setups. The experimental data showed that the normalized NPR is highly correlated with the gas pressure, and it was independent of the setups. As the gas pressure decreased, the normalized NPR was increased. Hence, the present study suggests that the effect of the cusp magnetic field is to achieve lower pressure operation which improves the normalized NPR. The numerical estimation became in agreement with the experimental result by introducing an adjusting factor which was highly correlated with the pressure. The difference of the pressure is expected to affect some factors, such as an effective cathode transparency.