ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Ronald L. Miller
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 940-944
Power Plants, Demo, and Next Steps | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9031
Articles are hosted by Taylor and Francis Online.
The characterization of the projected power-plant embodiment of the Reversed-Field Pinch (RFP) since the multi-institutional TITAN Study (c1990) is modified by new information and modern approaches used in recent conceptual design studies of various fusion embodiments in the areas of plasma physics/engineering, technology, safety and environmental impact, and costing. The basic features of a D-T burning, toroidal magnetic-confinement RFP system in the 1-GWe class remain, with modifications deriving from experimentally improved energy confinement scaling, re-examination of current-drive options required for steady operation, and other operational features, including the emphasis placed on high power density as a route to compactness and direct cost reduction. The relative competitiveness depends, as always, on plasma physics performance (e.g., beta, energy confinement time, fusion power density, and operational scenario) required technologies (magnetic coils, plasma-facing components, blanket, and power cycle), recirculating power fraction, plant availability (i.e., scheduled and forced outages), radioactive waste disposal, etc. The key aspects of a DEMO/first-commercial RFP fusion power core are examined in the systems context of competitiveness and public acceptance.