ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
Thomas Ihli
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 905-912
Power Plants, Demo, and Next Steps | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9025
Articles are hosted by Taylor and Francis Online.
The apparent fundamental movements in the world wide energy market risen by (i) the dramatic increase in world energy demand, (ii) the perceived danger of an ongoing world climate change and (iii) the predicted price and resource trends in fossil resources have risen discussions on the possibilities to significantly further accelerate the development of pure fusion power stations undecontrast at the same time strong fusion specific challenges are being recognized in the light of some issues with the ITER project in terms of schedule, technologies and cost. Therefore, it seems to be appropriate to reappraise the role of DEMO and fusion energy in the overall context and consider readjusting or redefining the medium-term mission in nuclear fusion and its relation to nuclear fission.Firstly, the current paper assesses synergies with nuclear fission Gen4 reactors. It is ascertained that the development of efficiently helium cooled high temperature components and reactor systems allows for strong collaboration between fission and fusion. Furthermore, it could be concluded that an integrated nuclear strategy for the 21st century should be developed including all important aspects of the possible interplay between fusion and fission. It is briefly discussed whether hybrid fusion-fission systems could be a central point of such an integrated strategy in the world wide context.The second emphasis of the current paper is on the description of the current progress made in Karlsruhe in the fields of design and testing of helium cooled components for fusion power stations and test facilities. Efficient helium cooling methods for divertor and blanket structures were found by applying the state of the art jet impingement and rib turbulator heat transfer enhancement techniques. The low pressure and the high pressure TBM section of the HELOKA facilities are under assembly. HELOKA is the main experimental tool for out of pile testing and qualification of in-vessel components at Forschungszentrum Karlsruhe.