ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Thomas Ihli
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 905-912
Power Plants, Demo, and Next Steps | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9025
Articles are hosted by Taylor and Francis Online.
The apparent fundamental movements in the world wide energy market risen by (i) the dramatic increase in world energy demand, (ii) the perceived danger of an ongoing world climate change and (iii) the predicted price and resource trends in fossil resources have risen discussions on the possibilities to significantly further accelerate the development of pure fusion power stations undecontrast at the same time strong fusion specific challenges are being recognized in the light of some issues with the ITER project in terms of schedule, technologies and cost. Therefore, it seems to be appropriate to reappraise the role of DEMO and fusion energy in the overall context and consider readjusting or redefining the medium-term mission in nuclear fusion and its relation to nuclear fission.Firstly, the current paper assesses synergies with nuclear fission Gen4 reactors. It is ascertained that the development of efficiently helium cooled high temperature components and reactor systems allows for strong collaboration between fission and fusion. Furthermore, it could be concluded that an integrated nuclear strategy for the 21st century should be developed including all important aspects of the possible interplay between fusion and fission. It is briefly discussed whether hybrid fusion-fission systems could be a central point of such an integrated strategy in the world wide context.The second emphasis of the current paper is on the description of the current progress made in Karlsruhe in the fields of design and testing of helium cooled components for fusion power stations and test facilities. Efficient helium cooling methods for divertor and blanket structures were found by applying the state of the art jet impingement and rib turbulator heat transfer enhancement techniques. The low pressure and the high pressure TBM section of the HELOKA facilities are under assembly. HELOKA is the main experimental tool for out of pile testing and qualification of in-vessel components at Forschungszentrum Karlsruhe.