ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Shahram Sharafat, Aaron Aoyama, Neil Morley, Sergey Smolentsev, Y. Katoh, Brian Williams, Nasr Ghoniem
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 883-891
Test Blanket Modules | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-7
Articles are hosted by Taylor and Francis Online.
The U.S.-ITER DCLL (Dual Coolant Liquid Lead) TBM (Test Blanket Module) uses a Flow Channel Insert (FCI), to test the feasibility of high temperature DCLL concepts for future power reactors. The FCI serves a dual function of electrical insulation, to mitigate MHD effects, and thermal insulation to keep steel-PbLi interface temperatures below allowable limits. As a non-structural component, the key performance requirements of the FCI structure are compatibility with PbLi, long-term radiation damage resistance, maintaining insulating properties over the lifetime, adequate insulation even in case of localized failures, and manufacturability. The main loads on the FCI are thermally induced due to through the thickness temperature gradients and due to non-uniform PbLi temperatures along the flow channel (∼1.6 m). A number of SiC-based materials are being developed for FCI applications, including SiC/SiC composites and porous SiC bonded between CVD SiC face sheets. Here, we report on an FCI design based on open-cell SiC-foam material. Thermo-mechanical analysis of this FCI concept indicate that a SiC-foam FCI structure is capable of withstanding anticipated primary and secondary stresses during operation in an ITER TBM environment. A complete 30 cm long prototypical segment of the FCI structure was designed and is being fabricated, demonstrating the SiC-foam based FCI structure to be very low-cost and viability candidate for an ITER TBM FCI structure.