ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Sei-Hun Yun et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 867-872
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9020
Articles are hosted by Taylor and Francis Online.
Thermophysical properties of the complex metal hydride system such as zirconium cobalt hydride, an intermetallic hydride compound, in a massive state were estimated by introducing a crystal lattice structure in a stepwise formation and applying a mixing rule for each property. Experimental data in rarity in metal hydride system was used to calculate and to correlate the consistency of the mixed thermal and physical properties of the complex atomic structure in a unit cell. As a result, the volume expansion of the ZrCoHx was greatly influenced by the hydrogen content and increased to a maximum range of 36% at ZrCoH3 system, but no meaning in the thermal expansion in engineering concept. In consideration of the heat capacity the temperature effect due to the hydrogen an interstitial heat quantity in the metal complex formation was mainly attributed, but not much for the hydrogen content (H/ZrCo ratio). In the temperature range between 200K and 600K the heat capacity of hydrogen atom was taken into account to reveal a sharp discrepancy in its non-hydriding property, especially in the lower temperature range. Atomic hydrogen was expected to behave from a gas to a solid property in heat capacity in the temperature ranges from 600K to 200K.