ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Takumi Hayashi et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 836-840
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9014
Articles are hosted by Taylor and Francis Online.
In order to investigate the function of water molecule for tritium transport behavior on the water-metal boundary, a series of experiments of tritium permeation into humid atmosphere was performed through pure iron piping with different surfaces of oxide etc., which contained about 1 kPa of pure tritium gas at 423 K. Chemical forms of tritium permeated into water were monitored continuously under purging outer jacket by <1000ppm of water vapor in Ar. Observation of metal surfaces was also carried out by Secondary Electron Microscope (SEM) and X-Ray Diffraction (XRD) analysis. The results were compared with those permeated into pressurized liquid water at 423 K.The actual tritium permeation rate into Ar with <1000 ppm of water vapor was not clearly changed that into liquid water. In the vapor atmosphere, a magnetite layer did not grow on the surface clearly, and tritium permeation rate and chemical species (∼100% of HTO) through pure iron piping with mechanically polished surface were not changed drastically comparing with data with a magnetite surface. On the other hand, hydrogen gas (HT) fraction of tritium permeated into the outer jacket increased drastically in case of a gold plating surface.