ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Yuuki Edao, Satoshi Fukada, Hidetaka Noguchi, Yasushi Maeda, Kazunari Katayama
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 831-835
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | dx.doi.org/10.13182/FST56-831
Articles are hosted by Taylor and Francis Online.
Rates and amounts of absorption and desorption of hydrogen and deuterium in a Li0.17Pb0.83 eutectic alloy are determined under the conditions of temperature of 400-700°C and the upstream H2 or D2 partial pressure of 103Pa-105 Pa by using a one-dimensional permeation pot. Because of small interaction between the alloy and dissolved atoms of hydrogen isotopes, the temperature dependence of the Sieverts' solubility constant for the Li0.17Pb0.83 -H or -D system, i.e., the enthalpy change of absorption or desorption, is small, and the absolute value of D solubility is higher than that of H. The isotope effect of diffusivity between H and D is very small. The generation rate and inventory of tritium (T) in a fusion blanket is estimated under an assumption of one-dimensional Li0.17Pb0.83 blanket system with a constant and uniform neutron flux.