ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Volker Pasler, Dmitry Klimenko
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 804-808
Safety and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9008
Articles are hosted by Taylor and Francis Online.
The inductive energy of about 40GJ stored permanently inside the toroidal field (TF) coils of ITER provides a considerable potential of hazard in case of an accident. While for most accidents it could be proved that the damage is limited to the coils themselves, possible high current arcs at the busbars of the TF coils may propagate to and penetrate the cryostat wall. Model arc experiments were setup to understand the propagation and damage potential of such arcs to provide a database for the development and validation of a numerical model as the next step. This work reviews the basic arc propagation and burning modes found so far and introduces new experimental setups and findings.