ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
M. Sawan, A. Ibrahim, T. Bohm, P. Wilson
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 756-760
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9000
Articles are hosted by Taylor and Francis Online.
The High Average Power Laser (HAPL) power plant has targets that are directly driven by forty KrF laser beams. Three-dimensional neutronics calculations were performed directly in the exact CAD model of the HAPL final optics system to assess the impact of the biological shielding configuration on the nuclear environment at the GIMM and dielectric focusing and turning mirrors. In the initial configuration, the biological shield fully encloses the GIMM sand associated dielectric mirrors. We assessed another configuration where the shield is moved farther from the target to fully enclose the dielectric mirrors leaving the GIMM in the open space between the chamber and the biological shield. A variation of this configuration utilizes 40 neutron traps attached to the inner surface of the biological shield behind the GIMMs. It is concluded that the shielding configuration with all optics including the GIMM being fully enclosed in the biological shield is the preferred option since it results in the lowest nuclear environment at the dielectric mirrors, provides better GIMM support, reduces the volume to be maintained under vacuum, and requires the least amount of concrete shield.