ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. Pampin, M. J. Loughlin, M. J. Walsh
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 751-755
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-751
Articles are hosted by Taylor and Francis Online.
Systematic analysis of the radiation fields throughout the ITER core LIDAR diagnostic system were performed to support the design optimisation and assessment process, aiming at achieving the required performance in terms of reliability, occupational safety and interface with neighboring systems. Neutron, photon, nuclear heat and material activation responses were estimated for a variety of configurations, and improved using a combination of analytical "rules of thumb" and numerical computations with the ATTILATM and FISPACT codes. The neutron flux at the backplate of the port plug was significantly reduced (to ∼2x107 n/cm2-s) by fine-tuning the reference geometry of the laser labyrinth, and guidelines were provided for quick estimation of the effect of future design changes. The current design has adequate lifetime of essential optical components, in particular absorption in collection windows below ∼1%, and reduced dose to workers during maintenance according to the ALARA principle.