ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Pampin, M. J. Loughlin, M. J. Walsh
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 751-755
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-751
Articles are hosted by Taylor and Francis Online.
Systematic analysis of the radiation fields throughout the ITER core LIDAR diagnostic system were performed to support the design optimisation and assessment process, aiming at achieving the required performance in terms of reliability, occupational safety and interface with neighboring systems. Neutron, photon, nuclear heat and material activation responses were estimated for a variety of configurations, and improved using a combination of analytical "rules of thumb" and numerical computations with the ATTILATM and FISPACT codes. The neutron flux at the backplate of the port plug was significantly reduced (to ∼2x107 n/cm2-s) by fine-tuning the reference geometry of the laser labyrinth, and guidelines were provided for quick estimation of the effect of future design changes. The current design has adequate lifetime of essential optical components, in particular absorption in collection windows below ∼1%, and reduced dose to workers during maintenance according to the ALARA principle.