ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Suk-Kwon Kim, Bong Guen Hong, Dong Won Lee, Do Heon Kim, Young-Ouk Lee
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 746-750
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8998
Articles are hosted by Taylor and Francis Online.
A system analysis has been performed to develop the concepts for a fusion reactor and to identify the design parameters by using the tokamak system analysis code at KAERI (Korea Atomic Energy Research Institute). The system code elucidates the device parameters which satisfy the plasma physics and engineering constraints by taking into account a wide range of plasma physics and technology effects, simultaneously. The calculation of 1-D neutronic system code was coupled with this tokamak system code to optimize the reactor parameters. The numerical simulation for blanket neutronics was performed with MCNP5 code to calculate the tritium breeding ratios and neutron multiplications, which were the input parameter of system code. With the coupled system analysis and one-dimensional neutronic calculation, we assessed various types of DEMO blanket concepts with the requirements for the DEMO selected as to demonstrate the tritium self-sufficiency, to generate a net electricity amount, and for a steady-state operation.