ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. D. Bohm, M. E. Sawan, P. Wilson
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 731-735
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8995
Articles are hosted by Taylor and Francis Online.
Gaps exist between the first wall/shield (FWS) modules of ITER to allow for fitting by remote handling equipment. Simplified three-dimensional models were used at the top and mid-plane locations to analyze gap streaming. Heating, helium production, and fast neutron fluence were examined at the front of the vacuum vessel and the magnet for both straight and stepped gaps. In addition, total nuclear heating values in the inboard magnet and central solenoid were examined for straight and stepped vertical gaps and for combined horizontal and vertical straight gaps. The results show significant radiation streaming effects that are more pronounced for fast neutron fluence and helium production. Furthermore, it was found that stepping the gap significantly reduces the local peaking, but has little effect on the relative average values of radiation effects. The results also show increases up to 75% in total magnet heating at the inboard mid-plane location for a straight 2 cm combined vertical and horizontal gap.