ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mahmoud Z. Youssef, Russell Feder, Kelly Thompson, Ian Davis, Gregory Failla
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 718-725
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8993
Articles are hosted by Taylor and Francis Online.
The new feature of the ATTILA 3-D code to calculate dose rates in a given geometry was benchmarked using the dose rate experiments performed at the FNG 14.1 MeV source facility located at ENEA, Frascati, Italy. Two experimental campaigns were performed. Post irradiation measurements were undertaken using Geiger-Müller, TLD, and tissue-equivalent scintillators. Other measurements were also performed during irradiation. ATTILA results were compared to the experimental data and to the results of the MCNP Monte Carlo code published earlier. The calculations were performed through three consecutive steps using the same ATTILA code along with its built-in activation library, FORNAX. The ANSI/ANS6.1.1-77 and ICRP74 Ka flux-to--dose conversion factors were used. Good agreement with the experimental data and the MCNP results was obtained for times >7 d after irradiation in the 1st campaign but large underestimation was found at shorter time steps. Both dose rates and integrated gamma fluxes are largely underestimated (∼20-40%) in the 2nd campaign.