ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
S. Domingo, Y. Herreras, F. Sordo, A. Lafuente, J. M. Perlado
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 710-717
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8992
Articles are hosted by Taylor and Francis Online.
This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modeled with a CAD program; this modeling is then processed - requiring few simplifications - with MCNP-CAD interface in order to generate a MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNP program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterized by high detail levels, such as ITER or other fusion facilities (IFMIF), in which we are presently involved.This procedure has been applied to the Fast Ignition Fusion Reactor KOYO-F. We have determined the neutron fluxes and energy deposition in the reactor blanket, and obtained the front panel damage and activation for several alternative front panel materials. To carry out this calculation, KOYO-F blanket design is modeled using CATIA V5, and the selected CAD-MCNP interface is MCAM, developed by the FDS Team (China). The activation of the front panel material is finally evaluated with our code ACAB, based on the neutronic irradiation results provided by MCNP.