ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Domingo, Y. Herreras, F. Sordo, A. Lafuente, J. M. Perlado
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 710-717
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8992
Articles are hosted by Taylor and Francis Online.
This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modeled with a CAD program; this modeling is then processed - requiring few simplifications - with MCNP-CAD interface in order to generate a MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNP program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterized by high detail levels, such as ITER or other fusion facilities (IFMIF), in which we are presently involved.This procedure has been applied to the Fast Ignition Fusion Reactor KOYO-F. We have determined the neutron fluxes and energy deposition in the reactor blanket, and obtained the front panel damage and activation for several alternative front panel materials. To carry out this calculation, KOYO-F blanket design is modeled using CATIA V5, and the selected CAD-MCNP interface is MCAM, developed by the FDS Team (China). The activation of the front panel material is finally evaluated with our code ACAB, based on the neutronic irradiation results provided by MCNP.