ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
U. Fischer et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 702-709
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8991
Articles are hosted by Taylor and Francis Online.
An extensive benchmark exercise has been conducted on ITER with the objective to test and validate different approaches for the use of CAD generated geometry data for Monte Carlo transport calculations with the MCNP code. The exercise encompassed the generation of a dedicated neutronics CATIA model based on available engineering CAD design data, the conversion into MCNP geometry, the verification of the converted models, and a number of calculations to compare the different approaches with regard to the performance and the validity of the results obtained. The paper briefly reviews the different approaches and provides a detailed description of the ITER benchmark effort, its results and conclusions showing that the approaches have reached the maturity level to allow their application to real ITER design analyses. This is considered an essential step forward for neutronics analysis tools to satisfy ITER quality assurance rules.