ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
L. Serio, Cryogenics Team
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 672-675
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8986
Articles are hosted by Taylor and Francis Online.
ITER cryogenic system is in its final design phase to be constructed at Cadarache, South of France. It shall use the most advanced cryogenic technologies developed for accelerators projects adapted and optimized to fulfil the requirements and constraints of a large fusion installation.A refrigeration capacity equivalent to 65 kW at 4.5 K is planned for the cooling of superconducting magnets, their HTS current leads and small users. It also includes the cooldown of the cryogenic pumps and their re-cooling after regeneration. A 1300 kW nitrogen plant provides cooling power for the thermal shields. The key design requirement is the capability to cope with large pulsed heat loads deposited in the magnets due to magnetic field variations and neutron production from the fusion reaction.The cryogenic distribution system is based on the design of a complex and compact transfer line system and several cryogenic distribution and feed boxes.After recalling the basic features we shall present the status of the design and the main magnet interfaces and key design requirements.