ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
D. J. Ward
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 581-588
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | dx.doi.org/10.13182/FST56-581
Articles are hosted by Taylor and Francis Online.
Conceptions of the aims and characteristics of DEMOs are evolving in response to world issues. Many areas are important in these considerations: two particularly important, and technically related, ones are examined here.Firstly, in the recent Strategic Energy Technology plan (SET plan) in the EU, approaches to technological development that could substantially change the future energy supply system were investigated. For fusion, this included considering how fusion development could be accelerated, particularly whether construction of a DEMO plant could start earlier than is normally assumed, perhaps before full exploitation of ITER. This is described in the technology map of the EU SET plan as an Early DEMO, or EDEMO. In this context, reconsidering the balance of the arguments between a steady-state and a pulsed design for EDEMO is motivated by the possibility that a sufficiently reliable and efficient current drive system may not be available on the necessary timescale.Secondly, the context for a fusion power plant, and consequently for DEMO, is set by the assumed applications, amongst which hydrogen production is an important possibility. Although this is a very different issue from pulsed operation of a fusion plant, it may be crucial in setting the framework in which a fusion plant operates. Both issues have the potential to radically change the view of what a DEMO plant should do.