ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
D. J. Ward
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 581-588
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-581
Articles are hosted by Taylor and Francis Online.
Conceptions of the aims and characteristics of DEMOs are evolving in response to world issues. Many areas are important in these considerations: two particularly important, and technically related, ones are examined here.Firstly, in the recent Strategic Energy Technology plan (SET plan) in the EU, approaches to technological development that could substantially change the future energy supply system were investigated. For fusion, this included considering how fusion development could be accelerated, particularly whether construction of a DEMO plant could start earlier than is normally assumed, perhaps before full exploitation of ITER. This is described in the technology map of the EU SET plan as an Early DEMO, or EDEMO. In this context, reconsidering the balance of the arguments between a steady-state and a pulsed design for EDEMO is motivated by the possibility that a sufficiently reliable and efficient current drive system may not be available on the necessary timescale.Secondly, the context for a fusion power plant, and consequently for DEMO, is set by the assumed applications, amongst which hydrogen production is an important possibility. Although this is a very different issue from pulsed operation of a fusion plant, it may be crucial in setting the framework in which a fusion plant operates. Both issues have the potential to radically change the view of what a DEMO plant should do.