ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
Neill Taylor et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 573-580
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-573
Articles are hosted by Taylor and Francis Online.
In order to support the licensing application for the ITER facility at Cadarache, a preliminary safety case has been prepared and submitted to the French nuclear safety authorities. This paper provides an overview of technical aspects of this case, which is based on an evolution of the safety approach developed and applied in earlier phases of the ITER project.The basis of the safety of ITER derives from the fundamental safety characteristics of fusion. The potential radiological hazards that arise are related to the tritium fuel and material activated by neutrons. The confinement of these materials is therefore the principal safety function, and it is reliably provided by robust barriers inherent in the design together with filtering and detritiation as a secondary level of confinement provision.A Defense in Depth approach is taken to ensure that off-normal events are minimized in their frequency, and that the consequences of accidents, even though extremely unlikely, are limited. A comprehensive set of analyses of postulated event sequences provides the demonstration that the consequences of enveloping scenarios are well within acceptable limits, and that even for hypothetical events involving two or more independent failures, the public and environmental impacts remain limited. An ALARA approach is taken to minimizing occupational radiation exposure, as well as other potential impacts of normal operation such as routine releases.Other hazards arising from internal and external risks are also considered, with design provisions, for example the Tokamak building is built on seismic isolation pads to minimise the effect of an earthquake.