ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
T. Sugiyama et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 132-135
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A896
Articles are hosted by Taylor and Francis Online.
At the National Institute for Fusion Science experimental studies on hydrogen isotope separation by a Combined Electrolysis Catalytic Exchange (CECE) process have been carried out in order to apply it to the system of water detritiation for D-D burning experiments of the Large Helical Device. As an improvement of the CECE process, we have developed a reduced-pressure method as a means of enhancing the separation factor. The feasibility of this method is examined through application to a CECE process using a prototype separation column. Hydrogen-deuterium isotope separation experiments are performed in the two cases where column pressures are 12 and 101 kPa, and the separation factors for hydrogen and deuterium are obtained as 6.8 and 5.6, respectively. It is confirmed that the present method is applicable and useful to the CECE process. The values of Height Equivalent to a Theoretical Plate (HETP) are estimated by analyses with the equilibrium stage model. The HETP values are 15 cm at 12 kPa and 13 cm at 101 kPa. The increase of superficial velocity with decreasing pressure may spoil the efficiency of the mass transfer.