ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. H. Sorebo, G. L. Kulcinski, R. F. Radel, J. F. Santarius
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 540-544
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST56-540
Articles are hosted by Taylor and Francis Online.
Special Nuclear Materials (SNM) detection efforts have largely been divided into two main groups: active and passive. Passive techniques are highly desirable in that a radiation source need not be employed in order to detect fissile materials which broadcast a clear radiative signature. However, disadvantages can be seen in HEU (Highly Enriched Uranium) detection, for example, where the system's efficacy is limited by its ability to detect a weak self-radiative signature from U. Active interrogation provides a catalyst for amplifying HEU's presence vis-a-vis fission event inducement, which in turn yields a starker signature which can be discerned through an understanding of fissile materials and neutron transport in various media. Ongoing work in the Fusion Technology Institute's Inertial Electrostatic Confinement (IEC) Experiment has focused on using the pulsed D-D neutrons from an IEC to interrogate the presence of HEU in an enclosed space. The paper begins with a brief description of the neutron-based detection schemes of Delayed Neutron Analysis (DNA) and Differential Die-Away (DDA). Experimental delayed neutron counts of ninety above the background at an interrogating neutron flux of 5.5x104 n/cm2-s are seen to confirm MCNP modeling results. MCNP is also utilized to probe future concepts in neutron-based active interrogating SNM detection systems using DDA analysis.