ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kai Masuda, Tomoya Nakagawa, Taiju Kajiwara, Heishun Zen, Kiyoshi Yoshikawa, Kazunobu Nagasaki
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 523-527
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8956
Articles are hosted by Taylor and Francis Online.
An inertial electrostatic confinement (IEC) fusion device driven by a ring-shaped built-in ion source is proposed and designed aiming at a reduced operating gas pressure in order to explore a possibility of a drastic enhancement in the fusion reaction rate in the envisaged beam-beam collision regime. In the present scheme ions will be extracted from a ring-shaped magnetron discharge plasma toward an IEC cathode grid placed concentrically at the center. A prototype ion source showed an accessible pressure of 5 mPa, which is hundreds times as low as the conventional glow-discharge-driven IEC. Dependence of the ion source current and extraction efficiency on the central IEC cathode voltage was studied by prototype experiments and numerical calculations. An IEC device with a built-in ion source was then designed based on these results. The expected IEC grid current is ~0.4 mA at 5 mPa, where observation of the beam-beam fusion contribution is anticipated.