ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
D. C. Donovan, D. R. Boris, G. L. Kulcinski, J. F. Santarius
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 507-511
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-22
Articles are hosted by Taylor and Francis Online.
The University of Wisconsin-Madison Inertial Electrostatic Confinement (IEC) Fusion Research Group has been performing experiments on an IEC device known as HOMER. This device is a 65cm high, 91cm diameter cylindrical aluminum vacuum chamber that contains two concentric spherical wire grids, the outer grid acting as the anode and the inner grid as the cathode. The potential difference between the anode and cathode drives ions towards the center of the grids. Using this device, steady-state D-D fusion reactions are created in order to produce 2.45 MeV neutrons. With the goal of achieving maximum neutron production rates, the following parameters have been varied: cathode voltage, ion current, operating pressure, and the separation distance between the anode and cathode. The studies on pressure, voltage, and current have led to the discovery of trends that allow for the extrapolation of neutron rates at various conditions. The cathode/anode separation studies have offered valuable insight into how the distance between the electrodes effects the concentration of deuterium molecular ions and the ion energy spectra, and has led to the implementation of a configuration that better maximizes neutron production rates.