ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Aristova, C. A. Gentile
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 475-477
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8948
Articles are hosted by Taylor and Francis Online.
An important technical and economic consideration in designing the prospective direct drive inertial fusion energy (IFE) reactor is the determination of a suitable mechanism for tritium breeding from neutrons produced in the initial reaction. A comprehensive review has been undertaken to determine the optimal breeding material, examining several candidate compounds. These include ceramic breeding pebbles as well as liquid 83Pb-17Li (Pb-Li) and (LiF)2BeF2 (FLiBe). In this study, the compounds are evaluated based on chemical and physical properties, structural requirements, feasibility, hazards, and costs of application. Preliminary results seem to indicate that, of the liquid breeding materials, FLiBe may be the more practical option, due to its mechanical feasibility and the relative projected efficiency of blanket design. Likewise, lithium metatitanate (Li2TiO3) appears to be a viable ceramic material. However, much remains to be investigated, particularly the properties of breeder and structural materials in the specific conditions of a reactor. Further work in this area will require theoretical modeling as well as practical trials, currently planned in other progenitor reactor designs. This paper will present the results of the analysis of these candidate breeder materials.