ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
S. G. Durbin, C. W. Morrow, M. E. Kipp, D. L. Smith
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 465-469
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | dx.doi.org/10.13182/FST09-A8946
Articles are hosted by Taylor and Francis Online.
The ultimate goal of this research is to understand how the recyclable transmission lines (RTL) fail and break apart following each power generating pulse under inertial-fusion-energy-type loading. Containing and collecting the resulting dust, debris, and shrapnel so that it may be repetitively reprocessed and recycled is an especially important step, among many others, to successfully operating a power plant. In this paper the current and the dynamic pressure pulse along the RTL are simulated with the Micro-Cap network circuit code. These results are used as inputs to the CTH shock physics code that characterizes the debris formation and containment wall impacts. These models were applied to represent different sections of the RTL at two resolutions. The following discussion addresses the full size nested cone RTL for a Z-pinch IFE power plant.