ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
R. W. Petzoldt, D. T. Goodin, E. Valmianski, L. C. Carlson, J. Stromsoe, R. K. Friend, J. Hares
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 417-421
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-25
Articles are hosted by Taylor and Francis Online.
Various methods for accelerating targets to be injected into an Inertial Fusion Energy (IFE) power plant have been considered such as gas gun, rail gun and electromagnetic induction. One method that could also be used for direct drive targets is electrostatic acceleration.We have been using electrostatic steering to improve target placement accuracy. We optically track the motion of a charged target, and feed back appropriate steering voltage to four steering electrodes. We have also completed fabrication and begun testing of an electrostatic accelerator that advances the electric field each time the charged target passes one of the 96 accelerating electrodes. Many of the accelerating electrodes are segmented to allow transverse position correction based on transverse position measurements during the acceleration process. Calculations indicate that this "first step" accelerator will achieve 10-15 m/s target velocity in 0.9 m with ±4 kV accelerating voltage. Updated target steering results as well as the accelerator design, fabrication, and early experimental results are presented.