A radically new ICF target design is described that is designed to achieve ultra-high deuterium densities in implosions. This target is based on emerging technology for creating deuterium clusters with densities approaching 1024/cm3 at room temperature in a Pd structure. Our initial studies of such clusters have relied on stress formation of dislocation sites in Pd thin films to the number of cluster sites per unit volume remains low. Here a new method employing nano-structuring of the Pd significantly increases the site density over the target volume. This in turn suggests that a sizable region of the compressed target deuterium can reach densities an order of magnitude higher than possible with prior target designs. This can significantly increase the fusion reaction burn density, hence the target burn-up efficiency.