ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
George H. Miley, Xiaoling Yang
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 395-400
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8933
Articles are hosted by Taylor and Francis Online.
A radically new ICF target design is described that is designed to achieve ultra-high deuterium densities in implosions. This target is based on emerging technology for creating deuterium clusters with densities approaching 1024/cm3 at room temperature in a Pd structure. Our initial studies of such clusters have relied on stress formation of dislocation sites in Pd thin films to the number of cluster sites per unit volume remains low. Here a new method employing nano-structuring of the Pd significantly increases the site density over the target volume. This in turn suggests that a sizable region of the compressed target deuterium can reach densities an order of magnitude higher than possible with prior target designs. This can significantly increase the fusion reaction burn density, hence the target burn-up efficiency.