ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
G. H. Miley, H. Hora, B. Malekynia, M. Ghoranneviss
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 384-390
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8931
Articles are hosted by Taylor and Francis Online.
Block ignition was proposed recently as a possible alternate approach to fast ignition for ICF fusion. This approach uses a modified petawatt-picosecond (PW-ps) laser pulse shape where the prepulse is strongly suppressed. This results in highly directed plasma blocks due to nonlinear (ponderomotive) force acceleration with space charge neutral ion current densities above 1011 Amp/cm2. This allows ignition of deuterium-tritium targets at densities somewhat above solid state density. However, a key issue has been the need to reduce the extremely high thresholds for the high energy flux densities of the blocks as pointed out in a related theory by Bobin and Chu in 1972. Here we show how the threshold can be reduced by a factor up to 20 by two effects. An important contribution comes from the inhibition factor for thermal conductivity due to electric double layers created in the block process. The second effect is the reduction to the stopping length, giving increased heating by the fusion product alpha due to collective interactions in the blocks. Results from including these effects in a hydrodynamic analysis are presented. The advantage of this approach for an ICF fusion reactor is the relaxed pre-compression requirement for high gain.