ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, D. E. Fyfe, R. Betti
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 377-383
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8930
Articles are hosted by Taylor and Francis Online.
New approaches in target design have increased the possibility that useful fusion power can be generated with sub-MJ lasers. We have performed many 1D and 2D simulations that examine the characteristics of target designs for sub-MJ lasers. These designs use the recently-proposed shock-ignition target scheme, which utilizes a separate high-intensity pulse to induce ignition. A promising feature of these designs is their significantly higher gains at lower energies (one dimensional (1D) gain ~ 100 at Elaser ~ 250kJ) than can be expected for the conventional central ignition scheme. The results of these simulations are shown and we discuss the implications for target fabrication and laser design. Of particular interest are the constraints on the target and laser from asymmetries due to target imperfections and laser imprint.