ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
S. J. Zenobia, G. L. Kulcinski
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 352-360
High Average Power Laser and Other IFE R&D | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8927
Articles are hosted by Taylor and Francis Online.
Single- and polycrystalline tungsten samples were implanted with 30 keV3He ions to fluences of 5e16, 4e17 and 5e18 He/cm2 at temperatures ranging from ~850 - 1000 °C. After implantation tungsten's retention characteristics were studied using 3He(d,p)4He nuclear reaction analysis (NRA) and 3He(n,p)T neutron depth profiling (NDP). Morphological analyses included scanning electron microscopy (SEM), focused ion beam (FIB) milling, and X-ray diffraction on the single crystalline W samples (XRD).SEM analysis showed that the threshold forsurface pore formation occurs in both single-crystalline tungsten (SCW) and polycrystalline tungsten (PCW) between ~5e16 - 4e17 He+/cm2. Both surface and sub-surface pore formation is observed to increase with higher implant fluences. Focused ion beam (FIB) milling revealed a sub-surface porous layer in both SCW and PCW, which increased in depth with implanted fluences. NRA measured the retained He fluence in SCW between 1.1e16 - 1.1e17 He/cm2 and in PCW between 1.3e17 - 1.5e17 He/cm2. NDP analysis measured the retained He fluence in SCW between 2.0e16 - 2.7e17 He/cm2 and in PCW between 4.1e16 - 3.2e17 He/cm2. Both of these analysis techniques reveal that the retained helium saturates in both single and polycrystalline W at ~4e17 cm-2. The NDP analysis showed that the peak helium concentration shifted deeper into the specimens as the dose was increased, indicating a decrease in the effective density of the surface layer with an increased dose. Average retained helium concentrations were found to range from 0.7 - 8.6 at% in SCW and from 1.3 - 11.4 at% in PCW.