ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
S. J. Zenobia, G. L. Kulcinski
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 352-360
High Average Power Laser and Other IFE R&D | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8927
Articles are hosted by Taylor and Francis Online.
Single- and polycrystalline tungsten samples were implanted with 30 keV3He ions to fluences of 5e16, 4e17 and 5e18 He/cm2 at temperatures ranging from ~850 - 1000 °C. After implantation tungsten's retention characteristics were studied using 3He(d,p)4He nuclear reaction analysis (NRA) and 3He(n,p)T neutron depth profiling (NDP). Morphological analyses included scanning electron microscopy (SEM), focused ion beam (FIB) milling, and X-ray diffraction on the single crystalline W samples (XRD).SEM analysis showed that the threshold forsurface pore formation occurs in both single-crystalline tungsten (SCW) and polycrystalline tungsten (PCW) between ~5e16 - 4e17 He+/cm2. Both surface and sub-surface pore formation is observed to increase with higher implant fluences. Focused ion beam (FIB) milling revealed a sub-surface porous layer in both SCW and PCW, which increased in depth with implanted fluences. NRA measured the retained He fluence in SCW between 1.1e16 - 1.1e17 He/cm2 and in PCW between 1.3e17 - 1.5e17 He/cm2. NDP analysis measured the retained He fluence in SCW between 2.0e16 - 2.7e17 He/cm2 and in PCW between 4.1e16 - 3.2e17 He/cm2. Both of these analysis techniques reveal that the retained helium saturates in both single and polycrystalline W at ~4e17 cm-2. The NDP analysis showed that the peak helium concentration shifted deeper into the specimens as the dose was increased, indicating a decrease in the effective density of the surface layer with an increased dose. Average retained helium concentrations were found to range from 0.7 - 8.6 at% in SCW and from 1.3 - 11.4 at% in PCW.