ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
James P. Blanchard, Qiyang Hu, Nasr Ghoniem
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 341-345
High Average Power Laser and Other IFE R&D | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8925
Articles are hosted by Taylor and Francis Online.
Dry wall laser IFE chambers will experience large, transient heat and particle fluxes as the target yield products reach the wall. These threats, consisting of x-rays, ions, and neutrons, can lead to wall failure caused by transient stresses or as a result of deposited ions in the near-surface layer. We have developed a unified model for the calculation of temperatures, stresses, strains, and fracture behavior in a solid IFE chamber wall. The model is also coupled with ion transport sub-models that assess the effects of ions on the morphology of the wall materials. This paper describes the models incorporated into the new unified simulation and, in particular, presents new fracture models that permit fracture calculations without the need for an advanced finite element calculation. This fracture model assumes that an array of surface cracks is present in the wall surface and uses superposition to calculate the stress intensity factor via a numerical integration of the stress profile computed for an un-cracked geometry. We also describe approaches for computing the stresses due to inertial effects resulting from the rapid heating associated with the IFE threats. In some cases, these inertial effects lead to stress waves that can lead to premature wall damage and must be accounted for in the analysis. This model is based on semi-analytical solutions for stress waves due to shallow heating in a relatively thick solid. The combined thermomechanical model gives us detailed understanding of the fundamental mechanics of rapidly heated surfaces.