ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
James P. Blanchard, Qiyang Hu, Nasr Ghoniem
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 341-345
High Average Power Laser and Other IFE R&D | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8925
Articles are hosted by Taylor and Francis Online.
Dry wall laser IFE chambers will experience large, transient heat and particle fluxes as the target yield products reach the wall. These threats, consisting of x-rays, ions, and neutrons, can lead to wall failure caused by transient stresses or as a result of deposited ions in the near-surface layer. We have developed a unified model for the calculation of temperatures, stresses, strains, and fracture behavior in a solid IFE chamber wall. The model is also coupled with ion transport sub-models that assess the effects of ions on the morphology of the wall materials. This paper describes the models incorporated into the new unified simulation and, in particular, presents new fracture models that permit fracture calculations without the need for an advanced finite element calculation. This fracture model assumes that an array of surface cracks is present in the wall surface and uses superposition to calculate the stress intensity factor via a numerical integration of the stress profile computed for an un-cracked geometry. We also describe approaches for computing the stresses due to inertial effects resulting from the rapid heating associated with the IFE threats. In some cases, these inertial effects lead to stress waves that can lead to premature wall damage and must be accounted for in the analysis. This model is based on semi-analytical solutions for stress waves due to shallow heating in a relatively thick solid. The combined thermomechanical model gives us detailed understanding of the fundamental mechanics of rapidly heated surfaces.