ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
A. R. Raffray et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 333-340
High Average Power Laser and Other IFE R&D | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8924
Articles are hosted by Taylor and Francis Online.
The High Average Power Laser (HAPL) program is focusing on the development of laser IFE power plants based on lasers, direct-drive targets and dry wall chambers. One key issue is the survival of the chamber wall under the ion threat spectra (representing ~25% of the yield energy). The possibility of steering the ions away from the chamber to specially-designed dump chambers using magnetic intervention is being investigated. This brings up the intriguing possibility of utilizing a liquid wall to accommodate the ion fluxes in the dump chamber provided the right measures are taken to prevent the liquid from contaminating the main chamber. This paper covers the initial assessment of different magnetic configurations for a laser IFE chamber. Their key characteristics are described; results of the supporting design analyses are summarized; and the major findings and issues are highlighted.