ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Yoshiyuki Watanabe, Kazunori Morishita, Akira Kohyama, Howard L. Heinisch, Fei Gao
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 328-330
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8923
Articles are hosted by Taylor and Francis Online.
Molecular dynamics and molecular statics calculations have been performed to evaluate the formation energy of self-interstitial atom (SIA) clusters in -SiC. For SIA-clusters with stoichiometric composition, an attempt has been made to fit the calculated data points to a polynomial function of cluster size n. The resultant equation EF=1.01n1+2.04n1/2 may indicate the applicability to a wide range of cluster sizes. This formalization will be useful for the development of accurate model on nucleation and growth of SIA-clusters, which is required for the modeling on irradiation-induced microstructural evolutions of materials in nuclear fusion reactors.