ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
N. Hara, S. Nogami, T. Nagasaka, A. Hasegawa, H. Tanigawa, T. Muroga
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 318-322
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8921
Articles are hosted by Taylor and Francis Online.
Dissimilar metal electron beam welding with reduced activation ferritic/martensitic steel, F82H IEA heat, and SUS316L austenitic stainless steel was studied. Mechanical property evaluation at room temperature by bend test, tensile test, Vickers hardness measurement and charpy impact test, and evaluation of irradiation hardening by proton irradiation at 300°C up to 0.5 dpa were carried out. The mechanical properties of the dissimilar weld were improved by the optimization of the electron beam position in the welding (shifted 0.2 mm on 316L side) and the post-weld heat treatment (PWHT) (750°C x 1 hour). The improvement of the mechanical properties might be due to the fact that the weld metal consisted of the austenitic phase. Smaller irradiation hardening than 316L was observed in the weld metal of the F82H/316L dissimilar weld after PWHT at 750°C for 1 hour, where the electron beam was shifted 0.2 mm on 316L side, though the formation of voids and dislocation loops occurred in the grain matrix of the weld metal.