ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
China on course to lead in nuclear by 2030, says IEA
China will have the world's largest nuclear power fleet within a decade, an International Energy Agency official noted during a session at the High-Level Workshop on Nuclear Power in Clean Energy Transitions, World Nuclear News reported on March 3.
The workshop was held jointly by the IEA and the International Atomic Energy Agency.
The IEA official, Brent Wanner, head of Power Sector Modelling & Analysis for the agency's World Energy Outlook publication, said that as nuclear fleets in the United States, Canada, and Japan reach their original design lifetimes, decisions will have to be made about what will happen after that. Absent license renewals, the contribution of nuclear power could decline substantially in those countries while China’s reactor building program will boost it into the first position.
S. Gordeev, L. Stoppel, R. Stieglitz, M. Daubner, F. Fellmoser
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 301-308
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | dx.doi.org/10.13182/FST09-A8918
Articles are hosted by Taylor and Francis Online.
The target assembly of the International Fusion Materials Irradiation Facility (IFMIF) consists of a nozzle, which has to form a stable lithium jet. Therefore, a flat uniform velocity distribution at the nozzle outlets cross-section with a simultaneously low turbulence intensity is required to ensure a safe operation. These boundary conditions necessitate a detailed knowledge on the turbulent flow in contraction nozzles in order identify turbulence models accurately predicting experimental findings within the velocity range of interest for nuclear target and hence can then act as design optimization tool.In order to validate commercially available Computational Fluid dynamic codes (CFD) and the turbulence models incorporated in them a series of experiments using water as model fluid are conducted in the Liquid-Metal-Laboratory KALLA at the research center Karlsruhe. A number of turbulence models with different extensions for the near wall treatment were tested versus the experimentally obtained data. Based on this comparison a hydraulic analysis of the contraction nozzle flow is performed taking into account the relaminarization of the accelerated flow, the occurrence of secondary motions and their impact on the development of the boundary layer. In summary the V2F turbulence model exhibits the best agreement between numerical and experimental data and thus can be considered to be most suitable for the simulation of the accelerated nozzle flow for free surface target applications.