ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
S. Sato et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 227-231
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8907
Articles are hosted by Taylor and Francis Online.
In the previous studies, the calculated TPRs were overestimated by more than 10 % compared with the measured values in the experiment with a neutron source reflector. In order to confirm that these overestimation are found on other reactions, reaction rate distributions are measured on 197Au(n,)198Au and 93Nb(n,2n)92mNb in the ITER TBM mockups with and without a reflector by the activation foil method with DT neutron irradiation experiments. Analyses are performed with MCNP-4C and FENDL-2.1. The ratios of the calculation results to the experimental ones with a reflector are slightly larger than those without a reflector on the reaction rate of 197Au(n,)198Au.