ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
A. Abou-Sena, A. Ying, M. Abdou
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 206-210
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8903
Articles are hosted by Taylor and Francis Online.
The thermal properties of the lithium ceramics pebble beds have a significant impact on the temperature profile of the Helium Cooled Pebble Bed blanket and the extraction of heat from the pebble beds to the coolant. The literature review showed a lack of experimental data on the interface thermal conductance (h) of lithium metatitanate pebble beds, therefore the objective of this study is to present experimental values of h. The measuring technique is based on the principles of steady state and axial heat flow methods. The lithium metatitanate pebble bed is single size (~O1.7-2.0mm pebbles) with a packing fraction of 61%. The values of h were measured at the interface of the pebbles with their container's wall (made of stainless steel 316). The results showed that h increased from 1800 to 5300W/m2.K with the increase of the wall temperature from 24 to 570°C. The theoretical values of h, calculated by three models, were compared with the experimental values. The theoretical and experimental values of h showed similar behavior with the increase of temperature. The present values of h will help to create a reliable database of the thermal properties of the lithium ceramics pebble beds.