ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Weston M. Stacey
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 38-46
Technical Paper | doi.org/10.13182/FST99-A89
Articles are hosted by Taylor and Francis Online.
A linear analysis of thermal instabilities along the magnetic field lines in the plasma edge is used to derive predictive algorithms for the edge density limit for the onset of multifaceted asymmetric radiation from the edge (MARFE) within the last closed flux surface in tokamaks. Calculated MARFE onset density limits for representative impurity and recycling neutral concentrations and representative edge plasma parameters in a model problem exhibit the expected strong dependence on impurity type and concentration at low recycling neutral concentrations. At recycling neutral concentrations greater than ~1 × 10-5, the MARFE onset density limit is found to depend strongly on the recycling neutral concentration and to be relatively independent of impurity type or concentration. Predicted MARFE onset density limits for two DIII-D shots agree reasonably well with experimental data.