ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Kenji Kotoh, Masashi Kawahara, Keisuke Kimura, Kazuhiko Kudo
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 179-183
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8898
Articles are hosted by Taylor and Francis Online.
Cryogenic pumps are convenient machinery for handling hydrogen isotopes in fusion fuel processing systems. Not only ultra-vacuum pumps working at such as liquid helium or hydrogen temperature but also sorption pumps using liquid nitrogen are applicable. The latter type is suitable to a means of temporary storage and/or transportation between process units. In the cryogenic pumping, there is an issue that the pressure in a pump is not necessarily identical with the pressure measured in its evacuating vessel in equilibrium, because of an effect of thermal transpiration. Thermal transpiration is important in adsorption isotherms which characterize cryo-sorption pumping. In this study, the effect of thermal transpiration was investigated for He, H2 and D2 in a closed system consisting of a volume at room temperature and a volume at cryogenic temperature, connected together by a simple narrow pipe or a pipe containing baffle plates as thermal shield. The effect is here described by an equation of nominal-distribution function with respect to the pressure measured in the hot end volume. Defining an effective inner diameter for the latter pipe, agreement is shown of characteristic curves for geometrically different pipes. The error-functional curves for H2 and D2 are agreed together. The curve for He is also perfectly approximated but with a constant shift. This shift results in the difference of a molecular property among He, H2 and D2.