ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Hongsuk Chung, Do-Hee Ahn, Kwang-Rag Kim, Seungwoo Paek, Minsoo Lee, Sung-Paal Yim, Myunghwa Shim
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 141-147
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8891
Articles are hosted by Taylor and Francis Online.
Tritiated gas and water should be properly treated to minimize an environmental tritium emission in nuclear fusion research facilities. Tritiated gas is usually treated in two steps: it is first oxidized to a tritiated water vapor by a catalyst and then the vapor is adsorbed in a molecular sieve drier. We have used a 1wt.% Pt/SDBC polymer catalyst and Zeolite 13X for the tritiated gas removal system. We confirmed that the decontamination factor of the equipment was more than 100 under a gas flow rate of 90 liters/hr and at a temperature of 65-80 °C.Furthermore we have developed a tritiated organic liquid treatment process. We have used a 0.5wt.% Pd/Al2O3 catalyst to oxidize an organic liquid. The simulated organic liquid was converted to water by over 99%. We have also developed a small scale CECE (Combined Electrolysis and Chemical Exchange) process by combining an LPCE (Liquid phase Catalytic Exchange) catalytic column with SPE (Solid Polymer Electrolyte) electrolysis. The experimental results of the CECE process produced a decontamination factor of 13-20. We used the electrolyte Nafion 117 which was coated with Pt as a cathode catalyst and IrO2 as an anode catalyst. We also tested a palladium alloy membrane for a purification of the hydrogen in the detritiation process.