ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Aimé Bruggeman, Johan Braet, Sven Vanderbiesen
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 102-107
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A889
Articles are hosted by Taylor and Francis Online.
A technically & economically sound technology for water detritiation is mandatory for the future of fusion. This technology is expected to be based on water electrolysis and Liquid Phase Catalytic Exchange (LPCE). LPCE requires an efficient hydrophobic catalyst. SCKCEN invented and developed such a catalyst in the past, which is prepared by depositing platinum on an activated charcoal carrier and mixing it with polytetrafluorethylene as a hydrophobic material. In combination with an appropriate wettable packing, different batches of this catalyst performed very well during years of extensive testing, allowing us to develop the ELEX process for water detritiation at inland reprocessing plants. Recently we succeeded in reproducing this catalyst and preparing a slightly different but clearly ameliorated type. By extrapolation these new results would allow us to obtain, at 40°C and under typical but conservative operating conditions, a decontamination factor of 10000 with a column of less than 3 meters long. Such performances would make this catalyst an excellent candidate for application at JET or ITER. To confirm the performances of our improved catalyst for a longer period of time and in a longer column, we are now starting experiments in a newly built installation and we are collaborating with ICSI, Romania.