ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Peter Titus et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 101-106
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8884
Articles are hosted by Taylor and Francis Online.
The next generation outer divertor target proposed for C-Mod is intended to operate with edge physics behavior that is 'Demo-like', i.e., it will be capable of operating at a bulk tile and structure temperature of 600C. The proposed design exposes a vertical cylinder covered with tungsten lamellae tiles to the divertor heat flux. Heat load variation along the height of the cylindrical target has been specified and is being considered in the tile design. The design must allow for differential radial thermal expansion of the cylindrical structure. It is intended to be toroidally continuous with a high tolerance on axisymmetry to improve alignment with the plasma and limit interactions of disruption induced currents with the toroidal field. Inductively driven axisymmetric disruption currents are calculated using electromagnetic transient simulations previously employed for RF antennas and the cryopump. Disruption-induced halo currents are expected to flow though the structure, which have proved troublesome for the old outer divertor structure. The new toroidally continuous structure will be intrinsically strong with respect to axisymmetric mechanical loads, although the support hardware will also need to be robust to resist movement during non-axisymmetric halo loads. Halo current specifications for the outer divertor have been developed, and halo current paths that minimize loading are "forced" with appropriate use of insulation and grounding straps. Radiative energy transfer to other components in the vessel makes sustained operation of the outer divertor at elevated temperatures difficult.