ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
B. Smith, P. Wilson, M. Sawan, T. Bohm
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 57-62
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8876
Articles are hosted by Taylor and Francis Online.
Radiation shielding, thermal protection, and energy removal for ITER are provided by an array of firstwall/shield modules (FWS). Nuclear analysis of the shield modules is important for understanding their performance and lifetime in the system. Using Direct Accelerated Geometry (DAG)-MCNPX, a coupling of traditional MCNPX with the Common Geometry Module (CGM) and the Mesh Oriented dAtaBase (MOAB) developed at UW, high-fidelity 3-D neutronics analysis is now possible. Particles are transported in the CAD geometry reducing analysis time, eliminating input error, and preserving geometric detail. The surface source read-write capability that exists in MCNPX has been used in DAG-MCNPX to combine realistic source conditions with an efficient analysis model. A surface source was written using a 3-D model of ITER with a detailed plasma source. The surface source was then used in a detailed 3-D CAD model of Module 13.3-D high fidelity mesh tallies were used to calculate nuclear heating used in thermal-hydraulics analysis. Surface source results were compared against results using a hybrid 1-D/3-D approach in which a uniform neutron source is extended infinitely in the vertical direction. Results show that the hybrid source overestimated the total number and under estimated the average energy of particles incident on the FW. The hybrid approach was found to overestimate the nuclear heating at the front of the first wall by as much as 63%.