ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
B. Smith, P. Wilson, M. Sawan, T. Bohm
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 57-62
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8876
Articles are hosted by Taylor and Francis Online.
Radiation shielding, thermal protection, and energy removal for ITER are provided by an array of firstwall/shield modules (FWS). Nuclear analysis of the shield modules is important for understanding their performance and lifetime in the system. Using Direct Accelerated Geometry (DAG)-MCNPX, a coupling of traditional MCNPX with the Common Geometry Module (CGM) and the Mesh Oriented dAtaBase (MOAB) developed at UW, high-fidelity 3-D neutronics analysis is now possible. Particles are transported in the CAD geometry reducing analysis time, eliminating input error, and preserving geometric detail. The surface source read-write capability that exists in MCNPX has been used in DAG-MCNPX to combine realistic source conditions with an efficient analysis model. A surface source was written using a 3-D model of ITER with a detailed plasma source. The surface source was then used in a detailed 3-D CAD model of Module 13.3-D high fidelity mesh tallies were used to calculate nuclear heating used in thermal-hydraulics analysis. Surface source results were compared against results using a hybrid 1-D/3-D approach in which a uniform neutron source is extended infinitely in the vertical direction. Results show that the hybrid source overestimated the total number and under estimated the average energy of particles incident on the FW. The hybrid approach was found to overestimate the nuclear heating at the front of the first wall by as much as 63%.