ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
S. Beloglazov, M. Glugla, R. Wagner, E. Fanghänel, S. Grünhagen
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 67-70
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | doi.org/10.13182/FST05-A882
Articles are hosted by Taylor and Francis Online.
In the present design of the Storage and Delivery System of the ITER Tritium Plant deuterium, tritium and their mixtures are stored in hydrogen storage beds with a storage capacity of 100 g. During plasma operation it is required that deuterium-tritium gases with well defined ratios of D/T are supplied by the different hydrogen storage beds. Due to the isotope effects the composition of the hydrogen gas mixture supplied by the getter bed may be different from the one absorbed in the getter and may even change during unloading of the bed depending on the variation of the isotope effect with the actual amount of hydrogen isotopes stored in the bed.At the Forschungszentrum Karlsruhe a 1:1 prototype of ITER hydrogen storage bed with a capacity of 100 g tritium and a target supply rate of up to 200 Pam3s-1 was designed and manufactured. The getter bed is currently filled with zirconium-cobalt and is installed in an experimental rig coupled with a micro gas chromatograph in order to perform texts under different operation conditions and to characterize the possible isotope effects. In this work a first data on the isotope effect during loading and unloading of the getter bed with the different hydrogen-deuterium mixtures is presented.