ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
Stanley M. Kaye, Masayuki Ono, Yueng-Kay Martin Peng, Donald B. Batchelor, Mark D. Carter, Wonho Choe, Robert Goldston, Yong-Seok Hwang, E. Fred Jaeger, Thomas R. Jarboe, Stephen Jardin, David Johnson, Robert Kaita, Charles Kessel, Henry Kugel, Rajesh Maingi, Richard Majeski, Janhardan Manickam, Jonathan Menard, David R. Mikkelsen, David J. Orvis, Brian A. Nelson, Franco Paoletti, Neil Pomphrey, Gregory Rewoldt, Steven Sabbagh, Dennis J. Strickler, Edmund Synakowski, James R. Wilson
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 16-37
Technical Paper | doi.org/10.13182/FST99-A88
Articles are hosted by Taylor and Francis Online.
The mission of the National Spherical Torus Experiment (NSTX) is to prove the principles of spherical torus physics by producing high-t plasmas that are noninductively sustained and whose current profiles are in steady state. The NSTX will be one of the first ultralow-aspect-ratio tori (R/a 1.3) to operate at high power (Pinput up to 11 MW) to produce high-t (25 to 40%), low-collisionality, high-bootstrap-fraction (70%) discharges. Both radio-frequency and neutral beam heating and current drive will be employed. Built into the NSTX is sufficient configurational flexibility to study a range of operating space and the resulting dependences of the confinement, micro- and magnetohydrodynamic stability, and particle- and power-handling properties. NSTX research will be carried out by a nationally based science team.